Schindler 3300
MRL Traction Elevator RCR Guide
California Hoistway Dimensions

Standard Speeds: 100, 150 fpm (0.5, 0.75 m/s) 16 Openings max
Travel: Up to 98’-5” (30.0 m)
Schindler 3300 MRL/Optimized 3300 MRL
California Hoistway Dimensions

(control room sizes may be different for the Expanded 3300)

Standard Speeds: 100, 150 fpm (0.5, 0.75 m/s) 16 Openings max
Travel: Up to 98’-5” (30.0 m)

Capacity 2100 – 3500 lbs, 13 – 21 passengers

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>lbs (kg)</td>
<td></td>
<td>fpm (m/s)</td>
<td></td>
<td></td>
<td>A in (mm)</td>
<td>B in (mm)</td>
<td>C in (mm)</td>
<td>F (iii) ft (m) / FPM (m/s)</td>
</tr>
<tr>
<td>2100 (950)</td>
<td>13</td>
<td>10100/150 (.5/.75)</td>
<td>15</td>
<td></td>
<td>5’-9” (1761)</td>
<td>4’-4 ½’h” (1343)</td>
<td>7’-9” (2366)</td>
<td>Front or Front/rear 7’-8” (2235)</td>
</tr>
<tr>
<td>2500 (1135)</td>
<td>15</td>
<td>1000/150 (.5/.75)</td>
<td>15</td>
<td></td>
<td>6’-9” (2066)</td>
<td>4’-4 ½’h” (1343)</td>
<td>7’-9” (2366)</td>
<td>Front or Front/rear 8’-8” (2540)</td>
</tr>
<tr>
<td>3000 (1360)</td>
<td>18</td>
<td>1000/150 (.5/.75)</td>
<td>15</td>
<td></td>
<td>6’-9” (2066)</td>
<td>4’-10 ½’h” (1495)</td>
<td>7’-9” (2366)</td>
<td>Front or Front/rear 8’-8” (2540)</td>
</tr>
<tr>
<td>3500 (1590)</td>
<td>21</td>
<td>1000/150 (.5/.75)</td>
<td>15</td>
<td></td>
<td>6’-9” (2066)</td>
<td>5’-6 ½’h” (1699)</td>
<td>7’-9” (2366)</td>
<td>Front or Front/rear 8’-8” (2540)</td>
</tr>
</tbody>
</table>

Notes:
All dimensions are for information only and cannot be used for construction purposes without Schindler confirmation.
(i) 2SSO doors available with right or left opening.
(ii) Duplex operation available.
(iii) Clear overhead is defined from the lowest point below any obstruction such as: hoist beam(s), building beams, or roof structure to floor of top landing.
(iv) Where permitted by code, no control closet is required. A 3-phase disconnect must be located in both the hoistway overhead and a location in the building outside of the hoistway. 110v disconnect should be located outside of hoistway. Disconnects are not required to be an elevator-dedicated space. Please confirm with local requirements.
(v) Travel height max. varies depending on speed (FPM) and capacity (lbs).
(vi) Please contact your Schindler Sales Representative for additional hatch options such as diagonal entrances.
(vii) Shaft dimensions depend on if there are front or front/rear entrances.
Remote Control Room Details

We strongly recommend that the RCR be placed adjacent to the hoistway on the top landing whenever possible. Otherwise, the RCR can be located on any floor of your building, including the basement or roof. The wire run from the elevator machine to the RCR cannot exceed 140’, and we recommend leaving no less than 30 feet available for any re-routing or detours required by onsite conditions during installation. Please keep in mind that we must lay our wiring according to all applicable building and electrical codes, and measurements must be based on actual wire travel, not from point A to point B. We strongly recommend that control rooms are placed adjacent to the hoistway on the top landing whenever possible to prevent building redesigns due to unforeseen obstacles during installation.
Does my elevator need a transformer?

- If capacity 3,500 lbs. and below, at 150 fpm or less and 208 VAC or 480 VAC then no autotransformer required.
- If capacity is 3,500 lbs. or above at 200 fpm or greater and input power is 480 VAC, then no autotransformer is required.
- All other configuration require an autotransformer.
- RCC (remote control space) applications at 208 VAC and greater than 45 ft. wire run requires a “booster” autotransformer in the remote control space.
Simplex
Full Room
Wire-run < 45'
Building Voltage == 208VAC or 480VAC
Capacity < 3000#, any Speed
OR
Capacity == 3500#, 480VAC, any Speed
OR
Capacity == 3500#, 208VAC, Speed == 100fpm

Working Spaces are 30” wide by 42” deep.

Working Spaces which directly over-lap (face each other) are 30” wide and 48” deep.
Simplex
Full Room
Wire-run < 45'
Capacity == 3500#, Speed == 150fpm, Building Voltage == 208VAC
OR
Any Capacity, any Speed, Building Voltage NOT == 208V or 480VAC

Working Spaces are 30” wide by 42” deep.

Working Spaces which directly over-lap (face each other) are 30” wide and 48” deep.
Simplex
Full Room
Wire-run < 45’
Capacity == 3500#, Speed == 150fpm, Building
Voltage == 208VAC
OR
Any Capacity, any Speed, Building Voltage NOT ==
208V or 480VAC

Working Spaces are 30” wide by 42” deep.

Working Spaces which directly over-lap (face each other) are 30” wide and 48” deep.
Simplex
Full Room
Wire-run > 45'
Building Voltage == 208VAC or 480VAC
Capacity < 3000#, any Speed
OR
Capacity == 3500#, 480VAC, any Speed
OR
Capacity == 3500#, 208VAC, Speed == 100f

Working Spaces are 30” wide by 42” deep.
Working Spaces which directly over-lap (face each other) are 30” wide and 48” deep.
Simplex
Full Room
Wire-run > 45’
Capacity == 3500#, Speed == 150fpm, Building Voltage == 208VAC
OR
Any Capacity, any Speed, Building Voltage NOT == 208V or 480VAC

Working Spaces are 30” wide by 42” deep.

Working Spaces which directly over-lap (face each other) are 30” wide and 48” deep.
Simplex
Full Room
Wire-run > 45'
Capacity == 3500#, Speed == 150fpm, Building Voltage == 208VAC
OR
Any Capacity, any Speed, Building Voltage NOT == 208V or 480VAC

Working Spaces are 30” wide by 42” deep.

Working Spaces which directly over-lap (face each other) are 30” wide and 48” deep.
Duplex
Full Room
Wire-run < 45'
Building Voltage == 208VAC or 480VAC
Capacity < 3000#, any Speed
OR
Capacity == 3500#, 480VAC, any Speed
OR
Capacity == 3500#, 208VAC, Speed == 100fpm

Working Spaces are 30” wide by 42” deep.

Working Spaces which directly over-lap (face each other) are 30” wide and 48” deep.
Duplex
Full Room
Wire-run < 45'
Capacity == 3500#, Speed == 150fpm, Building Voltage == 208VAC
OR
Any Capacity, any Speed, Building Voltage NOT == 208V or 480VAC

Working Spaces are 30” wide by 42” deep.

Working Spaces which directly over-lap (face each other) are 30” wide and 48” deep.
Duplex
Full Room
Wire-run < 45'
Capacity == 3500#, Speed == 150fpm, Building
Voltage == 208VAC
OR
Any Capacity, any Speed, Building Voltage NOT ==
208V or 480VAC

Working Spaces are 30” wide by 42” deep.

Working Spaces which directly over-lap (face each other) are 30” wide and
48” deep.
Duplex
Full Room
Wire-run > 45’
Building Voltage == 208VAC or 480VAC
Capacity < 3000#, any Speed
OR
Capacity == 3500#, 480VAC, any Speed
OR
Capacity == 3500#, 208VAC, Speed == 100fpm

Working Spaces are 30” wide by 42” deep.

Working Spaces which directly over-lap (face each other) are 30” wide and 48” deep.
Duplex
Full Room
Wire-run > 45'
Capacity == 3500#, Speed == 150fpm, Bld Voltage == 208VAC
OR
Any Capacity, any Speed, Building Voltage NOT == 208V or 480VAC

Working Spaces are 30” wide by 42” deep.

Working Spaces which directly over-lap (face each other) are 30” wide and 48” deep.
Duplex
Full Room
Wire-run > 45'
Capacity == 3500#, Speed == 150fpm, Building
Voltage == 208VAC
OR
Any Capacity, any Speed, Building Voltage NOT ==
208V or 480VAC

Working Spaces are 30” wide by 42” deep.

Working Spaces which directly over-lap (face each other) are 30” wide and 48” deep.
Simplex (or two separate spaces for a Duplex)
Closet
Wire-run < 45'
Building Voltage == 208VAC or 480VAC
Capacity < 3000#, any Speed
OR
Capacity == 3500#, 480VAC, any Speed
OR
Capacity == 3500#, 208VAC, Speed == 100fpm

Working Spaces are 30” wide by 42” deep.
Working Spaces which directly over-lap (face each other) are 30” wide and 48” deep.

At this time only Rooms should be offered unless proof of AHJ Code Acceptance (CEC 2013 for California) can be provided to Engineering.
Simplex (or two separate spaces for a Duplex)
Closet
Wire-run < 45'
Capacity == 3500#, Speed == 150fpm, Building Voltage == 208VAC
OR
Any Capacity, any Speed, Building Voltage NOT == 208V or 480VAC

#14

Working Spaces are 30” wide by 42” deep.

Working Spaces which directly over-lap (face each other) are 30” wide and 48” deep.

At this time only Rooms should be offered unless proof of AHJ Code Acceptance (CEC 2013 for California) can be provided to Engineering.
Simplex (or two separate spaces for a Duplex)
Closet
Wire-run < 45'
Capacity == 3500#, Speed == 150fpm, Building Voltage == 208VAC
OR
Any Capacity, any Speed, Building Voltage NOT == 208V or 480VAC

Working Spaces are 30” wide by 42” deep.

Working Spaces which directly over-lap (face each other) are 30” wide and 48” deep.

At this time only Rooms should be offered unless proof of AHJ Code Acceptance (CEC 2013 for California) can be provided to Engineering.
Simplex (or two separate spaces for a Duplex)
Closet
Wire-run > 45’
Building Voltage == 208VAC or 480VAC, Capacity < 3000#, any Speed
OR
Capacity == 3500#, 480VAC, any Speed
OR
Capacity == 3500#, 208VAC, Speed == 100fpm

Working Spaces are 30” wide by 42” deep.

Working Spaces which directly over-lap (face each other) are 30” wide and 48” deep.

At this time only Rooms should be offered unless proof of AHJ Code Acceptance (CEC 2013 for California) can be provided to Engineering.
Simplex (or two separate spaces for a Duplex)
Closet
Wire-run > 45'
Capacity == 3500#, Speed == 150fpm, Building Voltage == 208VAC
OR
Any Capacity, any Speed, Building Voltage NOT == 208V or 480VAC

Working Spaces are 30” wide by 42” deep.
Working Spaces which directly over-lap (face each other) are 30” wide and 48” deep.

At this time only Rooms should be offered unless proof of AHJ Code Acceptance (CEC 2013 for California) can be provided to Engineering.
Simplex (or two separate spaces for a Duplex)
Closet
Wire-run > 45'
Capacity == 3500#, Speed == 150fpm, Building Voltage == 208VAC
OR
Any Capacity, any Speed, Building Voltage NOT == 208V or 480VAC

Working Spaces are 30” wide by 42” deep.

Working Spaces which directly over-lap (face each other) are 30” wide and 48” deep.

At this time only Rooms should be offered unless proof of AHJ Code Acceptance (CEC 2013 for California) can be provided to Engineering.
Schindler 3300 MRL Traction Elevator

General Purpose

Standard Speeds: 150, 150 Tpm (0.5, 0.75 m/s) 16 Openings max
Travel: Up to 98'-5" (30.0 m)

General requirements

Requirements for installation vary by type of equipment selected. These general requirements assist you in preparing your building for the installation of Schindler elevators. All designs, clearances, construction, workmanship and materials, unless specifically excepted, shall be in accordance with the requirements of the latest published ASME A17.1 Code for electric traction elevators plus applicable building code and local codes. State or local requirements must be used if more stringent.

Items to be provided — A complete installation includes the following items not included in the elevator contract:

1. Clear, plumb hoistway, with variations on a minimum dimension hoistway not to exceed –0" and +1" (25.4 mm) per side at any point. Tolerance may increase to variations not to exceed –1" and +2" (50.8 mm) per side at any point when an additional 2" (50.8 mm) is provided on the hoistway width dimension.
2. Two-hour fire resistance of hoistway walls or rating to meet applicable local codes. 75' level baffles guard all on projections, recesses or setbacks over 4' (102 mm) except on side used for loading or unloading. The overhead machine space temperature at top of hoistway to be maintained between 41°F (5°C) and 104°F (40°C) and < 95% relative humidity, non-condensing.
3. Supports for rail brackets at pit, each floor and one or two locations above top floor in the overhead (application dependent). Divider beams between hoistways at each floor level and one or two locations above top floor in the overhead for guide rail brackets support. Locate per layout.
4. Lighting, light switch and duplex receptacle (GFCI) for each elevator, in the center of hoistway cabinet. The pit light switch adjacent to access door.
5. A temporary work platform is required for installation. It is to be constructed at the top floor of each elevator. It must comply with applicable governing codes and regulations. The platform shall be securely fastened to the building structure. Erection, movement, and removal are by others. (Reference Schindler drawing TD44G.)
6. Lighting, light switch and duplex receptacle (GFCI) for each elevator, in the center of hoistway pit and in the elevator overhead/machinery space, as indicated by Schindler. The pit light switch located adjacent to access door.
7. Recesses, supports, and patching, as required, to accommodate hall button boxes, signal fixtures, etc. (if required).
8. All barricades outside elevator hoistways or between elevators inside hoistways.
9. Dry pit reinforced to sustain normal vertical forces from rails and buffers.
10. Drains & sumps in elevator pits, where provided, shall comply with the plumbing code, and shall be securely fastened to the building structure. Erection, movement, and removal are by others. (Reference Schindler drawing TD44G.)
11. Supply hoist/safety beam for elevator construction and service work. Beam to run across the width of the elevator shaft. Locate per layout. Hoist beam to be left in place after elevator installation.
12. A temporary work platform is required for installation. It is to be constructed at the top floor of each elevator. It must comply with applicable governing codes and regulations. The platform shall be securely fastened to the building structure. Erection, movement, and removal are by others. (Reference Schindler drawing TD44G.)
13. Elevator Firefighter’s and other emergency services, depending on height of the building or number of floors, per NFPA A17.1 Rule 2.27.3. and/or local codes.
14. Door frames are to be anchored to walls and properly grouted in place to maintain legal fire rating of entrance header struts.
15. Ventilation and heat, smoke or products of combustion-sensing device, located on the Schindler final layout drawings. Where sensors are not used, hollow mosaic blocks are not acceptable for bracket fastening. Provide 125 mm (5") concrete belt around hoistway or other acceptable support at each floor, in overhead, and intermediate levels (if required). For max. rail bracket vertical spacing, contact your local sales representative.
16. Suitable copper feeder, ground and branch wiring circuits for signal system and power operated door. Feeder and branch wiring circuits for car light and fan.
17. Telecommunication outlet provided at the inspection and test panel or in control closet (where applicable).
18. Elevator hoist machine. Two-hour fire rating of control space walls or rating to meet applicable local codes.
19. Disconnects for each elevator must be provided per National Electrical Code (NFPA No. 70) and located inside the elevator control space.
20. Door frames and sills are to be constructed in accordance with all applicable codes, local and national codes. Door frames are to be anchored to walls and properly grouted in place to maintain legal fire rating of entrance header struts.
21. Wiring, and other wiring, according to code and manufacturer’s instructions.
22. Interior and exterior doors are fire-rated and a minimum fire protection rating of 1-hour or 2-hour.
23. Elevator Firefighter’s and other emergency services’ wiring and interconnections to automatic sprinklers systems or heat and smoke-sensing devices furnished by others.
24. Requirements for earthquake protection, dictated by building code, are required in various sections of the country.

Entrances

29. Hoistway walls must have a fire rating per ASME A17.1 Rule 2.1.1.1.
30. Elevator Firefighter’s and other emergency services’ wiring and interconnections to automatic sprinklers systems or heat and smoke-sensing devices furnished by others.
31. The interface of the elevator wall with the hoistway entrance assembly shall be in strict compliance with the elevator contractor’s requirements.
32. Door frames are to be constructed and installed in accordance with the manufacturer’s instructions.
33. Filling and grouting around entrance by others.
34. Where openings occur, all walls and sill supports must be plumbed.

Schindler is a member organization of the U.S. Green Building Council.

Schindler has received renewal to ISO 9001 and ISO 14001 certificates.

Schindler prints with vegetable-based ink on paper containing post-consumer waste fiber.