We don’t just talk green, we act green. Corporate citizenship at Schindler: http://ccr.schindler.com

VDI 4707
Energy Efficiency Label for Elevators
Schindler’s Approach to Sustainability
Life Cycle Assessment (LCA)

With elevators and escalators accounting for up to 15% (*Source: CIBSE Guide D) of the building sector’s use of energy, green innovations and other energy saving initiatives can offer large reductions in the energy footprint of our built environment. Schindler’s “Life Cycle Approach” addresses all ecological aspects throughout the entire lifecycle of an elevator or escalator i.e. from its development, its energy usage in a building to the day of its modernization or disposal.

Life cycle Assessment
Schindler uses external expert to conduct Life Cycle Assessment following ISO 14004 to 14043 to identify further potential improvement on ecological performance. The LCA assessment demonstrates that power consumption of an elevator during its usage phase over a life cycle of 20 to 30 years is responsible for 80% of the environmental impact.

By far the largest potential for reducing the environmental impact thus lies in the elevator-operation phase, followed by raw material acquisition and disposal (refer to table below).

<table>
<thead>
<tr>
<th>Total environmental impact % by product phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development</td>
</tr>
<tr>
<td>Material procurement</td>
</tr>
<tr>
<td>Production</td>
</tr>
<tr>
<td>Utilization phase</td>
</tr>
</tbody>
</table>

The energy generated while an elevator is in service (utilization phase) accounts for two-thirds of its environmental impact.

Schindler’s policy is that all new products have a better eco-performance than their predecessor models. Owing to intelligent and eco-friendly design, Schindler elevators ensure the highest possible performance and efficiency, thus generating substantial contribution to minimizing buildings’ ecological footprint across their life cycle.

Sustainable urban development is a major challenge for planners and architects in the 21st century, and Schindler supports with energy-efficient and ecologically sound mobility solutions for commercial and residential buildings.

VDI 4707
The Elevator Energy Efficiency Benchmark

Schindler assesses its elevators based on the VDI 4707 standard, an elevator energy efficiency classification guideline established by the Association of German Engineers. The VDI 4707 is widely applied in Europe and quickly gaining popularity in other parts of the world.

Energy efficiency classification of VDI 4707
VDI 4707 measures and classifies elevators according to their energy performance. It defines an Energy label and provides a figure for a “yearly nominal energy demand”.

Seven energy efficiency classes provide a transparent and factual overview when rating elevators according to their energy performance. They range from “A” to “G” with “A” being the best-in-class system.

The rating combines measurements of both standby and travel energy. Ratings are also influenced by travel height, speed, load and usage frequency.

The measurements and classification are a guideline for Schindler to further contribute to sustainable building development.

Energy efficiency classes

<table>
<thead>
<tr>
<th>Energy efficiency class</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>G</td>
</tr>
</tbody>
</table>

Measurement is carried out on actual elevator installation. Depending on the usage of the elevator, measurements from both standby and travel classes need to be considered separately to form a common class: the Energy Efficiency Class of the elevator.

Sustainable urban development is a major challenge for planners and architects in the 21st century, and Schindler supports with energy-efficient and ecologically sound mobility solutions for commercial and residential buildings.

<table>
<thead>
<tr>
<th>Table of VDI 4707 Measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel category</td>
</tr>
<tr>
<td>Usage category</td>
</tr>
</tbody>
</table>

Mathematical model
- Elevator/Customer data
- Given specifications influence the weighting of travel and stand-by energy demand
- Influence the total classification

Classification
- Rating is given according to individual unit specification and usage
- Total energy efficiency classes from A-G, whereby A is “best in class”
Schindler 3300 AP
Energy Efficiency Label

Case study: Actual measurement carried out in Shanghai, China on 16 April 2010. Schindler 3300 AP, low to mid rise elevator achieved the A class energy rating from the VDI 4707, the highest rating under the VDI 4707 classification.

Efficient system
The passenger elevator Schindler 3300 AP follows an efficient system approach. Resulting in optimized energy demand, ecological responsible production and material usage, convenient planning, fast installation and trouble-free maintenance.

Drive
- Green gearless machine for smooth ride quality
- Efficient motor enabling a direct power transfer, avoiding loss of power
- Stable start without high peak current, quickly reaching a low energy consumption level
- Frequency converter equipped with stand-by power mode
- Environmentally friendly as no oil is needed for lubrication
- Compact, light weight, and durable design that optimizes material usage

Control
- System switches car lights and ventilation into stand-by mode when not in use
- Car panel and floor indicators operate with low power LEDs
- Multi-bus control
- Smart operation, down collective and selective collective controls for efficient passenger transportation

Car and hoistway
- Car lighting equipped with energy saving lamps
- Central guiding system reduces mechanical friction and energy consumption
- Door drive with stand-by mode for safety and energy conservation
- Machine-room-less and Eco-effective design allows for more space in the same shaft and save construction resources
- Lead free counterweight

Elevator energy efficiency certificate

Manufacturer: Schindler
Location: Shanghai China
Elevator Model: Schindler 3300 AP
Elevator Type: Electric operated passenger elevator

Energy efficiency classes

<table>
<thead>
<tr>
<th>Class</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Excellent</td>
</tr>
<tr>
<td>B</td>
<td>Good</td>
</tr>
<tr>
<td>C</td>
<td>Average</td>
</tr>
<tr>
<td>D</td>
<td>Below Average</td>
</tr>
<tr>
<td>E</td>
<td>Poor</td>
</tr>
<tr>
<td>F</td>
<td>Very Poor</td>
</tr>
<tr>
<td>G</td>
<td>Worst</td>
</tr>
</tbody>
</table>

Energy demand kWh/year
Nominal demand per for nominal values shown.

4,246 kWh/year

Rated load: 1,000 kg
Rated speed: 1.75 m/s
Operating days / year: 365
Standby demand: 71 W
Specific travel demand: 0.537 mWh/kgm
Usage category 4
according to VDI 4707
Comparison of energy efficiency is only possible under equal usage.

Date: 16.04.2010
Schindler 7000 Energy Efficiency Label

Case study: Actual measurement carried out in Shanghai, China on 13 April 2010. Schindler 7000, high rise elevator achieved the A class energy rating from the VDI 4707, the highest rating under the VDI 4707 classification.

Efficient system
The Schindler 7000 high rise elevator follows an efficient system approach, resulting in optimized energy demands, ecologically responsible production and material usage, convenient planning, fast installation and trouble-free maintenance.

Drive
- Regenerative drive technology, return of regenerated energy to power line
- Synchronous and asynchronous gearless motor technology
- Outstanding ACVF technology
- Best in class Power factor 1 technology and THD (total harmonic distortion) of ≤ 3%
- Top efficiency factors
- Reduction of energy consumption

Car and hoistway
Car:
- Automatic switch-off of car lighting if elevators are not in use
- Use of highly efficient roller guide shoe
Door:
- Highly efficient synchronous and asynchronous motor
- Low-friction mechanics

Control
- Traffic Management System
- Schindler development: Intelligent, energy-saving application thanks to microprocessor technology
- More performance with fewer elevators
- Direct travel with minimum stops
- Faster availability of cars
- Reduction of empty car operation

Elevator energy efficiency certificate

Manufacturer: Schindler
Location: Shanghai China
Elevator Model: Schindler 7000
Elevator Type: Electric operated passenger elevator

Energy demand kWh/year
Nominal demand per year for nominal values shown.

Energy efficiency classes

A
B
C
D
E
F
G

Rated load: 1,600 kg
Rated speed: 4 m/s
Operating days / year: 365
Standby demand: 294 W
(energy demand class D)
Specific travel demand: 0.462 mWh/kgm
(energy demand class A)

Usage category 5 according to VDI 4707
Comparison of energy efficiency is only possible under equal usage.

Date: 13.04.2010